Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1,3,3,5,5,7,7-Octaphenyl-2,6-dioxa-4,8-diaza-1,3,5,7-tetrasilacyclooctane

Zhen Lv, Lina Dai, Xuezhong Zhang, Zhijie Zhang* and Zemin Xie

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

Correspondence e-mail: zhangzj@iccas.ac.cn

Received 11 April 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.120; data-to-parameter ratio = 19.1.

The title molecule, C₄₈H₄₂N₂O₂Si₄, lies on a twofold rotation axis. The eight-membered ring has a slightly distorted boat conformation.

Related literature

For the hydrolysis of 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4tetraphenylcyclodisilazane, see: Voronkov et al. (1977).

Experimental

Crystal data

$C_{48}H_{42}N_2O_2Si_4$	$V = 4245.8 (11) \text{ Å}^3$
$M_r = 791.20$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 12.1188 (18) Å	$\mu = 0.18 \text{ mm}^{-1}$
b = 17.016 (3) Å	T = 173 K
c = 20.621 (3) Å	$0.35 \times 0.35 \times 0.05 \text{ mm}$
$\beta = 93.216 \ (3)^{\circ}$	

Data collection

Rigaku MM007-HF CCD (Saturn 724+) diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) $T_{\min} = 0.939, T_{\max} = 0.991$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.052 \\ wR(F^2) &= 0.120 \end{split}$$
S = 1.104833 reflections

14029 measured reflections 4833 independent reflections 4411 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$

253 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors would like to thank the National Natural Science Foundation of China (grant No. 50803070) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5233).

References

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Voronkov, M. G., Varezhkin, Yu. M., Zhinkin, D. Ya., Morgunova, M. M., Gurkova, S. N., Gusev, A. I. & Alekseev, N. V. (1977). Dokl. Akad. Nauk SSSR, 237, 102-104.

supplementary materials

Acta Cryst. (2011). E67, o1233 [doi:10.1107/S1600536811014851]

1,1,3,3,5,5,7,7-Octaphenyl-2,6-dioxa-4,8-diaza-1,3,5,7-tetrasilacyclooctane

Z. Lv, L. Dai, X. Zhang, Z. Zhang and Z. Xie

Comment

The title compound is one of the hydrolysis products of 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4-tetraphenylcyclodisilazane. Voronkov *et al.* (1977) reported that the hydrolysis of 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4-tetraphenylcyclodisilazane in base medium could give 1,1,3,3,5,5,7,7-octaphenyl-2,4-dioxa-6,8,-diaza-1,3,5,7-tetrasilacyclo-octane and we have found that the title compound was also produced. Its crystal structure is presented herein. The molecular structure of the title compound is shown in Fig. 1. The eight-membered ring has a slightly disorted boat conformation.

Experimental

The reaction scheme is shown in Fig. 2. 1 ml aqueous solution of sodium hydroxide (0.1 mol/L) was added to a solution of 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4-tetraphenylcyclodisilazane (1 g) in tetrahydrofuran (10 ml). After stirring for 30 min at room temprature, the solvents were removed under reduced pressure. The crude product was recrystallized from n-hexane to give colorless crystals.

Refinement

All the H atoms were located in difference maps but were subsequently placed in calculated positions with C-H = 0.95Å and constrained in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with 30% ellipsoids. H atoms are not shown (symmetry code (A): -x+1, y, -z+3/2).

Fig. 2. The hydrolysis reaction of 1,3-bis-(hydroxydiphenylsilanyl)-2,2,4,4-tetraphenylcycl-odisilazane

2,2,4,4,6,6,8,8-octaphenyl-1,5,3,7,2,4,6,8-dioxadiazatetrasilocane

Crystal data C₄₈H₄₂N₂O₂Si₄

F(000) = 1664

$M_r = 791.20$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 12.1188 (18) Å
<i>b</i> = 17.016 (3) Å
c = 20.621 (3) Å
$\beta = 93.216 (3)^{\circ}$
$V = 4245.8 (11) \text{ Å}^3$
Z = 4

Data collection

Rigaku MM007-HF CCD (Saturn 724+) diffractometer	4833 independent reflections
Radiation source: rotating anode	4411 reflections with $I > 2\sigma(I)$
Confocal	$R_{\rm int} = 0.039$
$ω$ scans at fixed $\chi = 45^{\circ}$	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2007)	$h = -15 \rightarrow 13$
$T_{\min} = 0.939, \ T_{\max} = 0.991$	$k = -18 \rightarrow 22$
14029 measured reflections	$l = -26 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 4.974P]$ where $P = (F_o^2 + 2F_c^2)/3$
4833 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
253 parameters	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

 $D_{\rm x} = 1.238 {\rm Mg m}^{-3}$

 $\theta = 2.1-27.5^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 173 KPlatelet, colorless $0.35 \times 0.35 \times 0.05 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 7324 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Si1	0.34094 (4)	0.15720 (3)	0.71343 (2)	0.02431 (13)
Si2	0.55767 (4)	0.21644 (3)	0.65217 (2)	0.02461 (13)
01	0.44552 (11)	0.16871 (8)	0.66768 (6)	0.0324 (3)
N1	0.35191 (13)	0.21530 (9)	0.78113 (7)	0.0282 (3)
H1A	0.3008	0.2520	0.7818	0.034*
C1	0.21399 (15)	0.18949 (11)	0.66561 (8)	0.0269 (4)
C2	0.21930 (18)	0.23932 (15)	0.61226 (10)	0.0437 (5)
H2A	0.2895	0.2534	0.5975	0.052*
C3	0.12476 (19)	0.26890 (15)	0.58017 (11)	0.0471 (6)
H3A	0.1310	0.3036	0.5445	0.057*
C4	0.02258 (18)	0.24847 (14)	0.59954 (10)	0.0415 (5)
H4A	-0.0422	0.2684	0.5772	0.050*
C5	0.01439 (18)	0.19908 (15)	0.65148 (12)	0.0478 (6)
H5A	-0.0564	0.1845	0.6651	0.057*
C6	0.10912 (17)	0.17011 (13)	0.68447 (11)	0.0390 (5)
H6A	0.1019	0.1363	0.7207	0.047*
C7	0.33633 (15)	0.05141 (11)	0.73523 (9)	0.0284 (4)
C8	0.29044 (18)	0.02462 (12)	0.79170 (11)	0.0405 (5)
H8A	0.2599	0.0613	0.8204	0.049*
C9	0.2889 (2)	-0.05507 (14)	0.80646 (12)	0.0503 (6)
H9A	0.2573	-0.0725	0.8450	0.060*
C10	0.3333 (2)	-0.10885 (13)	0.76511 (13)	0.0492 (6)
H10A	0.3335	-0.1632	0.7756	0.059*
C11	0.3772 (2)	-0.08378 (13)	0.70882 (12)	0.0481 (6)
H11A	0.4062	-0.1209	0.6799	0.058*
C12	0.37953 (19)	-0.00461 (12)	0.69411 (10)	0.0390 (5)
H12A	0.4111	0.0121	0.6553	0.047*
C13	0.61490 (16)	0.16531 (11)	0.58150 (8)	0.0289 (4)
C14	0.5520 (2)	0.11582 (13)	0.54049 (10)	0.0416 (5)
H14A	0.4766	0.1068	0.5485	0.050*
C15	0.5975 (2)	0.07921 (15)	0.48789 (12)	0.0550 (6)
H15A	0.5531	0.0461	0.4600	0.066*
C16	0.7078 (2)	0.09105 (15)	0.47616 (12)	0.0545 (7)
H16A	0.7399	0.0647	0.4412	0.065*
C17	0.7700 (2)	0.14071 (17)	0.51506 (12)	0.0543 (6)
H17A	0.8451	0.1501	0.5065	0.065*
C18	0.72369 (18)	0.17780 (15)	0.56732 (11)	0.0434 (5)
H18A	0.7679	0.2125	0.5938	0.052*
C19	0.52733 (15)	0.32134 (11)	0.63098 (9)	0.0306 (4)
C20	0.5545 (2)	0.38324 (14)	0.67257 (12)	0.0515 (6)
H20A	0.5909	0.3725	0.7136	0.062*
C21	0.5299 (3)	0.46049 (16)	0.65572 (16)	0.0752 (9)
H21A	0.5515	0.5019	0.6846	0.090*
C22	0.4745 (3)	0.47717 (17)	0.59751 (16)	0.0731 (9)
H22A	0.4558	0.5299	0.5866	0.088*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} Si10.0258 (3)0.0259 (2)0.0213 (2) -0.00224 (18)0.00372 (18) -0.00254 (18)O10.0313 (7)0.0380 (7)0.0284 (6) -0.0055 (6)0.0064 (5) -0.0026 (6)N10.0297 (8)0.0257 (8)0.0260 (7)0.0041 (6)0.0004 (6) -0.0057 (6)C10.0293 (9)0.0260 (8)0.0254 (8) -0.0021 (7)0.0009 (7) -0.0058 (7)C20.0334 (11)0.0627 (15)0.0356 (11) -0.0052 (11) -0.0053 (9)0.012 (9)C30.0423 (12)0.0627 (15)0.0356 (11) -0.0025 (10)0.0114 (9)0.0112 (9)C40.0353 (11)0.0478 (12)0.0404 (11)0.012 (9) -0.0074 (9) -0.0096 (10)C50.0268 (10)0.0570 (14)0.0595 (14) -0.0025 (10)0.014 (10)0.0140 (12)C60.0333 (10)0.0390 (11)0.0497 (12) -0.0033 (9)0.0096 (9)C7C70.0272 (9)0.0271 (9)0.0376 (9) -0.0048 (9)0.0114 (9)0.010 (9)C80.0443 (12)0.0326 (10)0.0574 (16) -0.0016 (11)0.0622 (11)0.0125 (11)C100.0524 (14)0.0262 (10)0.0574 (16) -0.0048 (9)0.0114 (9)0.0016 (9)C110.0611 (15)0.0301 (11)0.0514 (14) -0.0016 (11)0.0062 (11) <t< th=""><th>C23 H23A C24 H24A</th><th>0.4461 (2) 0.4083 0.47270 (17) 0.4535</th><th>0.41749 (17 0.4290 0.34019 (14 0.2994</th><th>() })</th><th>0.55499 0.5145 0.57119 0.5412</th><th>(13) (10)</th><th>0.059 0.071 0.041 0.049</th><th>1 (7) * 0 (5) *</th><th></th></t<>	C23 H23A C24 H24A	0.4461 (2) 0.4083 0.47270 (17) 0.4535	0.41749 (17 0.4290 0.34019 (14 0.2994	() })	0.55499 0.5145 0.57119 0.5412	(13) (10)	0.059 0.071 0.041 0.049	1 (7) * 0 (5) *	
U^{11} U^{22} U^{33} U^{12} U^{13} U^{23} Si10.0250 (2)0.0252 (2)0.0230 (2) -0.00224 (18)0.00372 (18) -0.00254 (18)Si20.0258 (3)0.0269 (2)0.0213 (2) -0.00168 (19)0.00308 (18)0.00178 (18)O10.0313 (7)0.0380 (7)0.0284 (6) -0.0055 (6)0.0044 (5) -0.0020 (6)N10.0297 (8)0.0260 (7)0.0041 (6)0.0004 (6) -0.0057 (6)C10.0293 (9)0.0260 (8)0.0254 (8) -0.0021 (7)0.0009 (7) -0.0058 (7)C20.0334 (11)0.0624 (14)0.0353 (11) -0.0052 (11) -0.0053 (9)0.0122 (10)C30.0423 (12)0.0627 (15)0.0356 (11) -0.0021 (7) -0.0074 (9) -0.0091 (10)C40.0353 (11)0.0478 (12)0.0404 (11)0.012 (9) -0.0074 (9) -0.0091 (10)C50.0268 (10)0.0570 (14)0.0595 (14) -0.0025 (10)0.0114 (10) 0.1040 (12)C60.0333 (10)0.0390 (11)0.0449 (12) -0.0033 (9) 0.0038 (9) 0.0026 (10)C70.0272 (9)0.0271 (9)0.037 (9) -0.0056 (7) -0.0025 (11) 0.0267 (11)C100.0524 (14)0.0262 (10)0.0674 (16) -0.0051 (9) -0.0124 (11)C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10) -0.0070 (11) -0.0027 (10)C120.0433 (12)0.0335 (10)0.0332 (10) -0.0044 (19) </td <td>Atomic displace</td> <td>ement parameters (</td> <td>(\AA^2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Atomic displace	ement parameters ((\AA^2)						
Si1 $0.0250 (2)$ $0.0252 (2)$ $0.0230 (2)$ $-0.00224 (18)$ $0.00372 (18)$ $-0.00254 (18)$ Si2 $0.0258 (3)$ $0.0269 (2)$ $0.0213 (2)$ $-0.00168 (19)$ $0.00308 (18)$ $0.00178 (18)$ O1 $0.0313 (7)$ $0.0380 (7)$ $0.0224 (6)$ $-0.0055 (6)$ $0.0064 (5)$ $-0.0020 (6)$ N1 $0.0297 (8)$ $0.0287 (8)$ $0.0261 (7)$ $0.0041 (6)$ $0.0004 (6)$ $-0.0057 (7)$ C2 $0.0334 (11)$ $0.0624 (14)$ $0.0353 (11)$ $-0.0058 (10)$ $0.0012 (9)$ $0.0122 (10)$ C3 $0.0423 (12)$ $0.0627 (15)$ $0.0356 (11)$ $-0.0032 (11)$ $-0.0053 (9)$ $0.0159 (10)$ C4 $0.0353 (11)$ $0.0478 (12)$ $0.0404 (11)$ $0.0012 (9)$ $-0.0074 (9)$ $-0.009 (10)$ C5 $0.0268 (10)$ $0.0570 (14)$ $0.0595 (14)$ $-0.0025 (10)$ $0.014 (10)$ $0.014 (12)$ C6 $0.0333 (10)$ $0.0390 (11)$ $0.0449 (12)$ $-0.0032 (10)$ $0.014 (10)$ $0.014 (12)$ C7 $0.0272 (9)$ $0.0271 (9)$ $0.0370 (9)$ $-0.005 (7)$ $-0.0023 (7)$ $0.0026 (11)$ $0.012 (11)$ C8 $0.0443 (12)$ $0.0326 (10)$ $0.0455 (12)$ $-0.0048 (9)$ $0.0114 (9)$ $0.0010 (9)$ C9 $0.0555 (15)$ $0.0413 (12)$ $0.0544 (14)$ $-0.0116 (11)$ $0.066 (1)$ $0.0027 (10)$ C11 $0.0611 (15)$ $0.031 (11)$ $0.0524 (14)$ $-0.003 (9)$ $-0.0023 (9)$ $-0.0023 (9)$ C12 $0.0433 (10)$ $0.035 (9)$ <		U^{11}	U^{22}	U^{33}		U^{12}		U^{13}	U^{23}
Si2 $0.0258 (3)$ $0.0269 (2)$ $0.0213 (2)$ $-0.00168 (19)$ $0.00308 (18)$ $0.00178 (18)$ O1 $0.0313 (7)$ $0.0380 (7)$ $0.0284 (6)$ $-0.0055 (6)$ $0.0064 (5)$ $-0.0020 (6)$ N1 $0.0297 (8)$ $0.0287 (8)$ $0.0260 (7)$ $0.0041 (6)$ $0.0004 (6)$ $-0.0057 (6)$ C1 $0.0293 (9)$ $0.0260 (8)$ $0.0254 (8)$ $-0.0021 (7)$ $0.0009 (7)$ $-0.0058 (7)$ C2 $0.0334 (11)$ $0.0624 (14)$ $0.0353 (11)$ $-0.0068 (10)$ $0.012 (9)$ $0.012 (9)$ $0.012 (10)$ C3 $0.0423 (12)$ $0.0627 (15)$ $0.0335 (11)$ $-0.0032 (11)$ $-0.0053 (9)$ $0.0159 (10)$ C4 $0.0353 (11)$ $0.047 (15)$ $0.0355 (11)$ $-0.0025 (10)$ $0.014 (10)$ $0.0140 (12)$ C6 $0.0333 (10)$ $0.0570 (14)$ $0.0595 (14)$ $-0.0025 (10)$ $0.014 (10)$ $0.0140 (12)$ C6 $0.0333 (10)$ $0.0390 (11)$ $0.0449 (12)$ $-0.0033 (9)$ $0.0038 (9)$ $0.0096 (9)$ C7 $0.0272 (9)$ $0.0271 (9)$ $0.037 (9)$ $-0.0048 (9)$ $0.0114 (9)$ $0.0019 (9)$ C9 $0.0555 (15)$ $0.013 (12)$ $0.054 (14)$ $-0.016 (11)$ $0.0062 (11)$ $0.0125 (11)$ C10 $0.0524 (14)$ $0.0262 (10)$ $0.0674 (16)$ $-0.0051 (9)$ $-0.0023 (9)$ C11 $0.0611 (15)$ $0.031 (11)$ $0.0340 (10)$ $0.0054 (9)$ $-0.0023 (9)$ C12 $0.0493 (12)$ $0.0333 (10)$ $0.0340 (10)$ $0.0054 (9)$	Si1	0.0250 (2)	0.0252 (2)	0.0230 (2	2)	-0.00224 (1	8)	0.00372 (18)	-0.00254 (18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si2	0.0258 (3)	0.0269 (2)	0.0213 (2	2)	-0.00168 (1	9)	0.00308 (18)	0.00178 (18)
N1 0.0297 (8) 0.0287 (8) 0.0260 (7) 0.0041 (6) 0.0004 (6) -0.0057 (6) C1 0.0293 (9) 0.0260 (8) 0.0254 (8) -0.0021 (7) 0.0009 (7) -0.0058 (7) C2 0.0334 (11) 0.0624 (14) 0.0353 (11) -0.0068 (10) 0.0012 (9) 0.0122 (10) C3 0.0423 (12) 0.0627 (15) 0.0356 (11) -0.0033 (11) -0.0094 (9) -0.0090 (10) C4 0.0353 (11) 0.0478 (12) 0.0440 (11) 0.012 (9) -0.0090 (10) C5 0.0268 (10) 0.0570 (14) 0.0595 (14) -0.0033 (9) 0.0096 (9) C6 0.0333 (10) 0.0326 (10) 0.0449 (12) -0.0033 (9) 0.0012 (7) C7 0.0272 (9) 0.0271 (9) 0.0307 (9) -0.0005 (7) -0.0023 (7) C8 0.0443 (12) 0.0326 (10) 0.0445 (12) -0.0048 (9) 0.0114 (9) 0.0010 (9) C9 0.0555 (15) 0.0413 (12) 0.0544 (14) -0.0116 (11) 0.0022 (10) 0.0674 (16) -0.0051 (9) -0.0023 (7) </td <td>01</td> <td>0.0313 (7)</td> <td>0.0380 (7)</td> <td>0.0284 (</td> <td>6)</td> <td>-0.0055 (6)</td> <td></td> <td>0.0064 (5)</td> <td>-0.0020 (6)</td>	01	0.0313 (7)	0.0380 (7)	0.0284 (6)	-0.0055 (6)		0.0064 (5)	-0.0020 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0.0297 (8)	0.0287 (8)	0.0260 (7)	0.0041 (6)		0.0004 (6)	-0.0057 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0293 (9)	0.0260 (8)	0.0254 (8)	-0.0021 (7)		0.0009 (7)	-0.0058 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0334 (11)	0.0624 (14)	0.0353 (11)	-0.0068 (10))	0.0012 (9)	0.0122 (10)
C4 0.0353 (11) 0.0478 (12) 0.0404 (11) 0.0012 (9) -0.0074 (9) -0.0009 (10) C5 0.0268 (10) 0.0570 (14) 0.0595 (14) -0.0025 (10) 0.0014 (10) 0.0140 (12) C6 0.0333 (10) 0.0390 (11) 0.0449 (12) -0.0033 (9) 0.0038 (9) 0.0096 (9) C7 0.0272 (9) 0.0271 (9) 0.0307 (9) -0.0005 (7) -0.0005 (7) -0.0023 (7) C8 0.0443 (12) 0.0326 (10) 0.0455 (12) -0.0048 (9) 0.0114 (9) 0.0125 (11) C10 0.0524 (14) 0.0262 (10) 0.0674 (16) -0.0051 (9) -0.0129 (12) 0.0027 (10) C11 0.0611 (15) 0.0301 (11) 0.0521 (13) 0.0066 (10) -0.0070 (11) -0.0091 (10) C12 0.0493 (12) 0.0333 (10) 0.0340 (10) 0.0054 (9) -0.0033 (9) -0.0042 (8) C13 0.0335 (10) 0.0305 (9) 0.0232 (8) 0.0009 (7) 0.0058 (7) 0.0036 (7) C14 0.0483 (13) 0.0445 (12) 0.0328 (10) -0	C3	0.0423 (12)	0.0627 (15)	0.0356 (11)	-0.0032 (11)	-0.0053 (9)	0.0159 (10)
C50.0268 (10)0.0570 (14)0.0595 (14)-0.0025 (10)0.0014 (10)0.0140 (12)C60.0333 (10)0.0390 (11)0.0449 (12)-0.0033 (9)0.0038 (9)0.0096 (9)C70.0272 (9)0.0271 (9)0.0307 (9)-0.0005 (7)-0.0005 (7)-0.0023 (7)C80.0443 (12)0.0326 (10)0.0455 (12)-0.0048 (9)0.0114 (9)0.0110 (9)C90.0555 (15)0.0413 (12)0.0544 (14)-0.0116 (11)0.0062 (11)0.0125 (11)C100.0524 (14)0.0262 (10)0.0674 (16)-0.0051 (9)-0.0129 (12)0.0027 (10)C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10)-0.0070 (11)-0.0091 (10)C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0038 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0255 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.018 (11)-0.0019 (12)-0.0008 (13)C210.113 (3)0.0322 (15)0.086 (2)0.02	C4	0.0353 (11)	0.0478 (12)	0.0404 (11)	0.0012 (9)		-0.0074 (9)	-0.0009 (10)
C6 $0.0333 (10)$ $0.0390 (11)$ $0.0449 (12)$ $-0.0033 (9)$ $0.0038 (9)$ $0.0096 (9)$ C7 $0.0272 (9)$ $0.0271 (9)$ $0.0307 (9)$ $-0.0005 (7)$ $-0.0005 (7)$ $-0.0023 (7)$ C8 $0.0443 (12)$ $0.0326 (10)$ $0.0455 (12)$ $-0.0048 (9)$ $0.0114 (9)$ $0.0010 (9)$ C9 $0.0555 (15)$ $0.0413 (12)$ $0.0544 (14)$ $-0.0116 (11)$ $0.062 (11)$ $0.0125 (11)$ C10 $0.0524 (14)$ $0.0262 (10)$ $0.674 (16)$ $-0.0051 (9)$ $-0.0129 (12)$ $0.0027 (10)$ C11 $0.0611 (15)$ $0.0301 (11)$ $0.0521 (13)$ $0.0066 (10)$ $-0.0070 (11)$ $-0.0091 (10)$ C12 $0.0493 (12)$ $0.0333 (10)$ $0.0340 (10)$ $0.0054 (9)$ $-0.0033 (9)$ $-0.0042 (8)$ C13 $0.0335 (10)$ $0.0305 (9)$ $0.0232 (8)$ $0.0009 (7)$ $0.0058 (7)$ $0.0036 (7)$ C14 $0.0483 (13)$ $0.0445 (12)$ $0.0328 (10)$ $-0.0049 (10)$ $0.081 (9)$ $-0.0050 (9)$ C15 $0.0738 (18)$ $0.0509 (14)$ $0.0413 (12)$ $-0.0061 (13)$ $0.0116 (12)$ $-0.0043 (11)$ C16 $0.0748 (18)$ $0.0516 (14)$ $0.0393 (11)$ $-0.0031 (10)$ $0.0110 (9)$ $-0.0057 (10)$ C19 $0.0295 (9)$ $0.0315 (9)$ $0.0315 (9)$ $0.0007 (7)$ $0.0073 (7)$ $0.0071 (8)$ C20 $0.0683 (17)$ $0.0350 (12)$ $0.0507 (13)$ $0.018 (11)$ $-0.0019 (12)$ $-0.0008 (13)$ C21 $0.113 (3)$ $0.0323 (13)$ 0.0	C5	0.0268 (10)	0.0570 (14)	0.0595 (14)	-0.0025 (10))	0.0014 (10)	0.0140 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0333 (10)	0.0390 (11)	0.0449 (12)	-0.0033 (9)		0.0038 (9)	0.0096 (9)
C80.0443 (12)0.0326 (10)0.0455 (12)-0.0048 (9)0.0114 (9)0.0010 (9)C90.0555 (15)0.0413 (12)0.0544 (14)-0.0116 (11)0.0062 (11)0.0125 (11)C100.0524 (14)0.0262 (10)0.0674 (16)-0.0051 (9)-0.0129 (12)0.0027 (10)C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10)-0.0070 (11)-0.0091 (10)C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0033 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0323 (13)0.81 (2)0.0555 (15)0.0110 (19)-0.0008 (13)C210.113 (3)0.0323 (13)0.081 (2)0.0255 (15)0.0110 (19)-0.0088 (13)C220.094 (2)0.0425 (15)0.086 (2)0	C7	0.0272 (9)	0.0271 (9)	0.0307 (9)	-0.0005 (7)		-0.0005 (7)	-0.0023 (7)
C90.0555 (15)0.0413 (12)0.0544 (14)-0.0116 (11)0.0062 (11)0.0125 (11)C100.0524 (14)0.0262 (10)0.0674 (16)-0.0051 (9)-0.0129 (12)0.0027 (10)C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10)-0.0070 (11)-0.0091 (10)C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0033 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0320 (12)0.0507 (13)0.018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0255 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0552 (15) <td>C8</td> <td>0.0443 (12)</td> <td>0.0326 (10)</td> <td>0.0455 (</td> <td>12)</td> <td>-0.0048 (9)</td> <td></td> <td>0.0114 (9)</td> <td>0.0010 (9)</td>	C8	0.0443 (12)	0.0326 (10)	0.0455 (12)	-0.0048 (9)		0.0114 (9)	0.0010 (9)
C100.0524 (14)0.0262 (10)0.0674 (16)-0.0051 (9)-0.0129 (12)0.0027 (10)C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10)-0.0070 (11)-0.0091 (10)C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0003 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0118 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0219 (15)0.0350 (19)0.0248 (15)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11) <td>C9</td> <td>0.0555 (15)</td> <td>0.0413 (12)</td> <td>0.0544 (</td> <td>14)</td> <td>-0.0116 (11</td> <td>)</td> <td>0.0062 (11)</td> <td>0.0125 (11)</td>	C9	0.0555 (15)	0.0413 (12)	0.0544 (14)	-0.0116 (11)	0.0062 (11)	0.0125 (11)
C110.0611 (15)0.0301 (11)0.0521 (13)0.0066 (10)-0.0070 (11)-0.0091 (10)C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0003 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0552 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C10	0.0524 (14)	0.0262 (10)	0.0674 (16)	-0.0051 (9)		-0.0129 (12)	0.0027 (10)
C120.0493 (12)0.0333 (10)0.0340 (10)0.0054 (9)-0.0003 (9)-0.0042 (8)C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.683 (17)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C210.113 (3)0.0323 (13)0.081 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C11	0.0611 (15)	0.0301 (11)	0.0521 (13)	0.0066 (10)		-0.0070 (11)	-0.0091 (10)
C130.0335 (10)0.0305 (9)0.0232 (8)0.0009 (7)0.0058 (7)0.0036 (7)C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0008 (13)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C12	0.0493 (12)	0.0333 (10)	0.0340 (10)	0.0054 (9)		-0.0003 (9)	-0.0042 (8)
C140.0483 (13)0.0445 (12)0.0328 (10)-0.0049 (10)0.0081 (9)-0.0050 (9)C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0320 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C13	0.0335 (10)	0.0305 (9)	0.0232 (8)	0.0009 (7)		0.0058 (7)	0.0036 (7)
C150.0738 (18)0.0509 (14)0.0413 (12)-0.0061 (13)0.0116 (12)-0.0146 (11)C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C14	0.0483 (13)	0.0445 (12)	0.0328 (10)	-0.0049 (10))	0.0081 (9)	-0.0050 (9)
C160.0748 (18)0.0516 (14)0.0393 (12)0.0140 (13)0.0235 (12)-0.0043 (11)C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C15	0.0738 (18)	0.0509 (14)	0.0413 (12)	-0.0061 (13)	0.0116 (12)	-0.0146 (11)
C170.0447 (13)0.0709 (17)0.0494 (14)0.0074 (12)0.0219 (11)0.0007 (12)C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C16	0.0748 (18)	0.0516 (14)	0.0393 (12)	0.0140 (13)		0.0235 (12)	-0.0043 (11)
C180.0358 (11)0.0563 (14)0.0393 (11)-0.0031 (10)0.0110 (9)-0.0057 (10)C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0366 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C17	0.0447 (13)	0.0709 (17)	0.0494 (14)	0.0074 (12)		0.0219 (11)	0.0007 (12)
C190.0295 (9)0.0315 (9)0.0315 (9)0.0007 (7)0.0073 (7)0.0071 (8)C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C18	0.0358 (11)	0.0563 (14)	0.0393 (11)	-0.0031 (10))	0.0110 (9)	-0.0057 (10)
C200.0683 (17)0.0350 (12)0.0507 (13)0.0018 (11)-0.0019 (12)-0.0010 (10)C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C19	0.0295 (9)	0.0315 (9)	0.0315 (9)	0.0007 (7)		0.0073 (7)	0.0071 (8)
C210.113 (3)0.0323 (13)0.081 (2)0.0055 (15)0.0110 (19)-0.0008 (13)C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C20	0.0683 (17)	0.0350 (12)	0.0507 (13)	0.0018 (11)		-0.0019 (12)	-0.0010 (10)
C220.094 (2)0.0425 (15)0.086 (2)0.0219 (15)0.0350 (19)0.0248 (15)C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C21	0.113 (3)	0.0323 (13)	0.081 (2))	0.0055 (15)		0.0110 (19)	-0.0008 (13)
C230.0513 (14)0.0715 (18)0.0562 (15)0.0179 (13)0.0186 (12)0.0386 (14)C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C22	0.094 (2)	0.0425 (15)	0.086 (2))	0.0219 (15)		0.0350 (19)	0.0248 (15)
C240.0368 (11)0.0514 (13)0.0355 (11)0.0043 (9)0.0075 (9)0.0163 (9)	C23	0.0513 (14)	0.0715 (18)	0.0562 (15)	0.0179 (13)		0.0186 (12)	0.0386 (14)
	C24	0.0368 (11)	0.0514 (13)	0.0355 (11)	0.0043 (9)		0.0075 (9)	0.0163 (9)

Geometric parameters (Å, °)

Si1—O1	1.6338 (14)	C10—C11	1.372 (4)
Si1—N1	1.7099 (15)	C10—H10A	0.9500
Si1—C7	1.8571 (19)	C11—C12	1.381 (3)
Si1—C1	1.8630 (19)	C11—H11A	0.9500
Si2—O1	1.6302 (14)	C12—H12A	0.9500
Si2—N1 ⁱ	1.7098 (15)	C13—C18	1.383 (3)
Si2—C13	1.8643 (19)	C13—C14	1.390 (3)
Si2—C19	1.869 (2)	C14—C15	1.392 (3)
N1—Si2 ⁱ	1.7098 (15)	C14—H14A	0.9500

N1—H1A	0.8800	C15—C16	1.386 (4)
C1—C6	1.390 (3)	C15—H15A	0.9500
C1—C2	1.393 (3)	C16—C17	1.363 (4)
C2—C3	1.385 (3)	C16—H16A	0.9500
C2—H2A	0.9500	C17—C18	1.394 (3)
C3—C4	1.367 (3)	С17—Н17А	0.9500
С3—НЗА	0.9500	C18—H18A	0.9500
C4—C5	1.369 (3)	C19—C20	1.386 (3)
C4—H4A	0.9500	C19—C24	1.403 (3)
C5—C6	1.391 (3)	C20—C21	1.388 (3)
С5—Н5А	0.9500	C20—H20A	0.9500
С6—Н6А	0.9500	C21—C22	1.372 (4)
С7—С8	1.395 (3)	C21—H21A	0.9500
C7—C12	1.397 (3)	C22—C23	1.373 (4)
C8—C9	1.390 (3)	C22—H22A	0.9500
C8—H8A	0.9500	C23—C24	1.390 (3)
C9—C10	1.381 (4)	С23—Н23А	0.9500
С9—Н9А	0.9500	C24—H24A	0.9500
O1—Si1—N1	112.01 (8)	C11—C10—H10A	120.0
O1—Si1—C7	106.91 (8)	C9—C10—H10A	120.0
N1—Si1—C7	111.40 (8)	C10-C11-C12	120.2 (2)
O1—Si1—C1	107.65 (8)	C10-C11-H11A	119.9
N1—Si1—C1	106.60 (8)	C12—C11—H11A	119.9
C7—Si1—C1	112.27 (8)	C11—C12—C7	121.3 (2)
01—Si2—N1 ⁱ	109.90 (7)	C11—C12—H12A	119.4
O1-Si2-C13	105.76 (8)	C7—C12—H12A	119.4
$N1^{i}$ Si2 C13	111.95 (8)	C18—C13—C14	117.47 (18)
01—Si2—C19	111.49 (8)	C18—C13—Si2	119.63 (15)
N1 ⁱ —Si2—C19	107.92 (8)	C14—C13—Si2	122.87 (15)
C13—Si2—C19	109.86 (8)	C13—C14—C15	121.1 (2)
Si2—O1—Si1	148.79 (9)	C13—C14—H14A	119.4
Si2 ⁱ —N1—Si1	132.87 (10)	C15—C14—H14A	119.4
Si2 ⁱ —N1—H1A	113.6	C16—C15—C14	120.0 (2)
Sil—N1—H1A	113.6	C16—C15—H15A	120.0
C6-C1-C2	116 67 (18)	C14—C15—H15A	120.0
C6-C1-Si1	121.53 (15)	C17—C16—C15	1196(2)
C2-C1-Si1	121.61 (15)	C17—C16—H16A	120.2
$C_3 - C_2 - C_1$	121.7 (2)	C15—C16—H16A	120.2
C3—C2—H2A	119.2	C16—C17—C18	120.2 (2)
C1—C2—H2A	119.2	С16—С17—Н17А	119.9
C4—C3—C2	120.4 (2)	C18—C17—H17A	119.9
С4—С3—НЗА	119.8	C13—C18—C17	121.6 (2)
С2—С3—Н3А	119.8	C13—C18—H18A	119.2
C3—C4—C5	119.4 (2)	C17—C18—H18A	119.2
С3—С4—Н4А	120.3	C20—C19—C24	117.0 (2)
C5—C4—H4A	120.3	C20—C19—Si2	122.97 (16)
C4—C5—C6	120.4 (2)	C24—C19—Si2	120.04 (16)
C4—C5—H5A	119.8	C19—C20—C21	121.6 (2)

supplementary materials

С6—С5—Н5А	119.8	C19—C20—H20A	119.2
C1—C6—C5	121.4 (2)	C21—C20—H20A	119.2
С1—С6—Н6А	119.3	C22—C21—C20	120.2 (3)
С5—С6—Н6А	119.3	C22—C21—H21A	119.9
C8—C7—C12	117.66 (18)	C20—C21—H21A	119.9
C8—C7—Si1	122.53 (15)	C21—C22—C23	119.9 (2)
C12—C7—Si1	119.81 (15)	C21—C22—H22A	120.0
C9—C8—C7	120.8 (2)	С23—С22—Н22А	120.0
С9—С8—Н8А	119.6	C22—C23—C24	120.0 (2)
С7—С8—Н8А	119.6	С22—С23—Н23А	120.0
C10—C9—C8	120.1 (2)	С24—С23—Н23А	120.0
С10—С9—Н9А	120.0	C23—C24—C19	121.2 (2)
С8—С9—Н9А	120.0	C23—C24—H24A	119.4
C11—C10—C9	120.0 (2)	C19—C24—H24A	119.4
$N1^{i}$ —Si2—O1—Si1	55.8 (2)	C9—C10—C11—C12	1.5 (4)
C13— $Si2$ — $O1$ — $Si1$	176.78 (17)	C10-C11-C12-C7	-0.9(3)
C19—Si2—O1—Si1	-63.8 (2)	C8—C7—C12—C11	-0.2(3)
N1-Si1-O1-Si2	-7.6(2)	Si1-C7-C12-C11	-179.88(17)
C7—Si1—O1—Si2	-129.94(18)	01 - Si2 - C13 - C18	-162.77(16)
C1—Si1—O1—Si2	109.24 (18)	N1 ⁱ —Si2—C13—C18	-43.10 (19)
01—Si1—N1—Si2 ⁱ	-66.15 (15)	C19—Si2—C13—C18	76.79 (18)
C7—Si1—N1—Si2 ⁱ	53.55 (15)	O1—Si2—C13—C14	18.92 (19)
C1—Si1—N1—Si2 ⁱ	176.34 (12)	N1 ⁱ —Si2—C13—C14	138.60 (17)
O1—Si1—C1—C6	164.56 (16)	C19—Si2—C13—C14	-101.52 (18)
N1—Si1—C1—C6	-75.08 (18)	C18—C13—C14—C15	1.1 (3)
C7—Si1—C1—C6	47.16 (18)	Si2-C13-C14-C15	179.47 (18)
01—Si1—C1—C2	-20.62 (19)	C13—C14—C15—C16	0.8 (4)
N1—Si1—C1—C2	99.73 (18)	C14—C15—C16—C17	-2.2 (4)
C7—Si1—C1—C2	-138.02 (17)	C15-C16-C17-C18	1.6 (4)
C6—C1—C2—C3	0.8 (3)	C14—C13—C18—C17	-1.7 (3)
Si1—C1—C2—C3	-174.23 (19)	Si2—C13—C18—C17	179.86 (19)
C1—C2—C3—C4	-1.3 (4)	C16-C17-C18-C13	0.4 (4)
C2—C3—C4—C5	0.7 (4)	O1—Si2—C19—C20	107.10 (19)
C3—C4—C5—C6	0.2 (4)	N1 ⁱ —Si2—C19—C20	-13.7 (2)
C2—C1—C6—C5	0.1 (3)	C13—Si2—C19—C20	-135.99 (19)
Si1—C1—C6—C5	175.18 (18)	O1—Si2—C19—C24	-71.58 (17)
C4—C5—C6—C1	-0.6 (4)	N1 ⁱ —Si2—C19—C24	167.65 (15)
O1—Si1—C7—C8	153.74 (16)	C13—Si2—C19—C24	45.33 (18)
N1—Si1—C7—C8	31.06 (19)	C24—C19—C20—C21	-0.6 (4)
C1—Si1—C7—C8	-88.42 (18)	Si2-C19-C20-C21	-179.4 (2)
O1—Si1—C7—C12	-26.55 (18)	C19—C20—C21—C22	2.0 (5)
N1—Si1—C7—C12	-149.23 (15)	C20-C21-C22-C23	-1.9 (5)
C1—Si1—C7—C12	91.29 (17)	C21—C22—C23—C24	0.6 (4)
C12—C7—C8—C9	0.5 (3)	C22—C23—C24—C19	0.8 (4)
Si1—C7—C8—C9	-179.76 (18)	C20—C19—C24—C23	-0.7 (3)
C7—C8—C9—C10	0.1 (4)	Si2—C19—C24—C23	178.04 (17)
C8—C9—C10—C11	-1.2 (4)		

Symmetry codes: (i) -x+1, y, -z+3/2.

